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Abstract 
 
Physics-based models for vias and traces including new component models are applied to 
simulate multilayer interconnects on printed circuit boards. A variety of interconnect 
structures, including via arrays and differential links between package via fields, are 
studied with model-to-hardware correlation. These models also enable efficient signal 
integrity and power integrity co-analysis with focus on modeling simultaneous switching 
noise coupled into high-speed signal nets as well as understanding the effects of 
decoupling capacitor placement. Simulation time has been reduced at least three orders of 
magnitude with respect to comparable full-wave simulations. 
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1. Introduction 
 
A multilayer PCB can be divided electrically into two functional parts: a signal link path 
and a power delivery network (PDN). The signal path consists of traces and vias whereas 
the PDN is defined by a stack-up of power and ground planes, large numbers  of vias 
connecting the planes in different layers, and many decoupling capacitors. To meet the 
requirement of increasing input/output (I/O) bandwidth and density, a large number of 
signal nets are densely routed often interwoven with the PDN which makes them 
susceptible to power and ground switching noise. Efficient and accurate modeling and 
simulation of interconnects is essential to perform signal integrity (SI) and power 
integrity (PI) co-analysis for high-speed link design on a multilayered PCB. 
 
Our research interests have focused on constructing physical link component models 
without resorting to full-wave EM field simulations. In previous work, the authors have 
presented scattering-based semi-analytical via models [1], physics-based via models 
[2─6] using parallel-plane impedance Zpp and via-to-plane capacitance [7], [8], and trace 
models based on the modal decomposition technique [9], [10]. Our link analysis 
methodology provides a complete and systematic end-to-end solution for trace and via 
design of the entire link path [5], [6]. It can be used during the pre-layout phase to 
quickly perform design discovery and to narrow the design space through manual or 
automated optimization. 
 
In this paper, the authors further extend the approach including models for components 
such as decoupling capacitors.  Next, we focus on applying the new models and the 
methodology to analyze several design problems considering both signal integrity and 
power integrity performance. We analyze via array field coupling and multilayered 
differential links between two package via fields and compare predictions to  measured 
data. We also investigate simultaneous switching noise coupling through the PDN to high 
speed signal nets as well as studying the impact of decoupling capacitor placement on 
noise reduction.  
 

 
2. “Via and Trace” models + “Component” models 
 
Figure 1 illustrates a cross-section view of a typical multi-layered PCB with a stripline 
trace referenced to both power and ground planes and which is connected to signal vias 
on both ends. Ground and power vias located some distance away from the signal via are 
also included. Components such as decoupling capacitors and termination resistors are 
often connected to power or signal vias on the PCB surface. The overall link analysis 
addresses 

-- Vias including geometric effects and coupling; 
-- Stripline transitions to/from vias; 
-- Coupled striplines referenced to both power and ground planes; 
-- Termination and decoupling components; 

 



In [5], we described the key models developed and implemented in this link analysis 
methodology: the multi-layered via structures are modeled using the physics-based model 
for rectangular or infinite shaped plane pairs to account for the coupling among vias. The 
effects of via geometric parameters are represented by an analytical form of via barrel-to-
plane capacitance. Transmission lines routed between power and ground planes are 
represented by appropriate admittance matrices. These component models are then 
concatenated in terms of S-parameters based on the link topology.  
 

 
Figure 1. Example of an end-to-end link on PCB including stripline and vias. 

 
Recently, we have implemented modeling components which are directly connected to 
vias. The components can be represented by a RLC series circuit, a RLC parallel circuit, 
or network scattering parameters. Figure 2 (left) illustrates series/parallel RLC circuits for 
the component models. Here, one terminal of the RLC model would be connected to the 
via and the other terminal would be connected to the reference plane. For example, in 
case of modeling a decoupling capacitor as shown in Figure 1, one terminal of the RLC 
circuit is connected to a PWR via and the other terminal is connected to the top ground 
plane. Figure 2 (right) illustrates a general N-port scattering parameter block which can 
be connected to m vias (m<=N). Here, one via connects to one individual S-parameter 
port. In addition to the via ports, the S-parameters can also contain an I/O port (i.e. port 
defined in the final solution) or an OPEN port. This feature is useful in modeling when 
we need to take into account any connectors, cable fixtures, or probes that connect to the 
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vias. Figure 3 illustrates a 4-port S-parameter block in which port 1 and port 2 are 
connected to two signal vias of a differential pair, while port 3 and port 4 are either 
OPEN ports or I/O ports. For example, the 4-port S-parameters here may represent a dual 
SMA launch or a dual microwave probe of which the S-parameter frequency response 
can be obtained from separate characterization either by measurement or by simulation.  

 
Figure 2. Series/parallel RLC circuits and S-parameter network for component models. 

 

 
Figure 3. Example of a 4-port scattering parameter block for component models. 

 
Having added the new component models, we revise the flow chart in [5] for assembling 
all the models together in a link analysis environment (Figure 4). Simulation set-up 
parameters and geometries of a PCB link first need to be specified in a text based I/O file 
for analysis. These include 

• Frequency sweep parameters; 
• Computational method for Zpp with different boundary conditions; 
• Board dimensions; 
• Board layer stack-up including dielectric properties; 
• Pad stack for signal vias, power vias and ground vias; 
• Via map including via location, type of pad stack, and connection with signal nets 
• Trace definition which defines transmission line models in touchstone format for 

selected nets; 
• Component models in terms of RLC circuits or S-parameter data and their 

connection to the vias; 
• Input/Output manager which configures ports for S-parameter analysis and post-

processing. 
 



Efficient generation of the via geometries and simulation parameters was managed 
through a MATLAB graphical user interface (GUI), which implemented all the above 
functions and created a text I/O file. The GUI can also load and modify any existing I/O 
file. After reading the I/O file, the engine performs link analysis computations. All the 
component models, including via capacitance, Zpp, striplines and component models are 
incorporated in the engine. Models are self-assembled and the final results are given in 
terms of S-parameters and stored in standard Touchstone format. The S-parameter file 
can also be loaded and plotted using the GUI.  
 

 
Figure 4. Flow chart of implementing link analysis. 

 
3. SI and PI Study of Design Examples 
 
Via Array Field Analysis  
 
Via arrays such as those found in ball/land grid array (BGA/LGA) fields often introduce 
significant signal cross-talk and degradation of the signals. To apply our models to study 
the electromagnetic field coupling in the via array, we have built via array structures 
without any trace connection in an 18-layer test board. Figure 5(left) shows the measured 
layer stack of the board. All vias in the array go through from the top plane to the bottom 
plane. Figure 5(right) illustrates the pattern of an 8-by-8 via array with an 80-mil pitch. 
There are 29 signal vias and 35 ground vias in this array. The radius of the via drill is 5 
mils with an antipad radius of 15 mils. Only the top and bottom planes have circuilar 
pads with a radius of 10 mils. All ground planes have the same size as the original board 
panel (21.8-inch by 16.8-inch) except for the top and bottom planes which have a much 
smaller square shape with a size of 600-mil by 600-mil. The dielectric material of the 
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board is Nelco4000-13. Three vias labeled in Figure 5(right) were measured using a 
vector network analyzer with GS probes (225um pitch) from the surface of the top plane 
as shown in Figure 6. Except for those contacted with the probes, both ends of all the 
signal vias were left open in the measurement set-up. The additional capacitance due to 
the fringing field from the surface via pads was not taken into account in the model.  
 
Figure 7 gives a comparison of simulated and measured near-end crosstalk expressed in 
terms of scattering parameters. Excellent correlation between the simulation and the 
measurement in these cases were obtained up to 20GHz. We can see that because of the 
ground via and larger distance between via 1 and via 2, the cross-talk S23 is significantly 
higher than S12 and S13. Also, the crosstalk S13 is higher than S12 at some high 
frequencies due to the field scattering by adjacent vias despite of the larger distance 
between the two signal vias.  
 
For the numerical simulation of the 80-mil pitch via array structure, our simulation using 
the physics-based via model took only about 37 seconds of CPU time for 200 frequency 
points up to 20 GHz on a single Intel processor (3GHz), whereas a 3D full-wave (HFSS®) 
simulation took more than 12 hours even with sweep interpolation enabled. 
 

 
 
Figure 5. Measured layer stack of the test board (left), top-view of the via array with 80-

mil pitch (right). 
 

 
Figure 6. Probing measurement setup on the board surface. 
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Figure 7.  Near-end crosstalk among via 1, via 2 and via 3 in an array with 80-mil pitch. 



 
Differential links between BGA via fields on a multilayered PCB  
 
We also applied the updated models and the link analysis method to revisit a real on-
board link described in [5]. Figure 8 shows a measurement set-up for an end-to-end 
differential link between two BGA via fields on a 24-layer low loss PCB. The analysis 
we show here is a major extension to the previous analysis in that we study channels on 
two different signal levels (i.e., 7 channels on S3 layer and S5 layer, respectively, as 
opposed to 2 channels on one S3 layer in [5]). For those adjacent signal vias whose 
stripline connections are not considered, we also terminated these vias using 50Ohm 
resistors to avoid via resonance artifacts in the modeling results. Figure 9 illustrates the 
layout of via fields and striplines on S3 layer and S5 layer. Board dimensions, layer stack, 
pad stack definition, as well as dielectric properties can be found in [5]. There are in total 
119 vias (76 signal vias; 43 ground vias) and 14 differential pairs in the extended model. 
 

 
Figure 8. End-to-end differential link measurement on PCB. 

 

 
Figure 9. Top view of configuration of via array and stripline layout. 
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The model-to-hardware correlation results in terms of single-ended S-parameters (link 9 
on layer S3) are plotted in Figure 10 up to 40 GHz. The cross-talk in the via array field, 
as well as the via stub effect on the insertion loss curve, are well captured in the 
simulation. The correlation between simulation and measurement are satisfactory 
considering the complexity of the real board structures and model simplifications. The 
model parameters were calculated based on physical geometries and they were not fitted 
in the simulation. 
 
With these simulation results, it is possible to compute the time-domain response for data 
rates up to 15 Gb/s with good accuracy. Figure 11 shows that the shape, vertical and 
horizontal opening of the eye diagram agree well (within 10%) up to that speed. Figure 
12 shows that the insertion loss differences between links at the same layer are small. The 
same trends are observed between measurement and simulated results. Figure 13 
illustrates the far-end crosstalk and transmission for link 17 on layer S5. Models also 
capture the salient features of the response for the longer link at S5.  
 
The total run time (excluding generating transmission line models) was about 2 minutes 
47 seconds using Zpp calculation with PML boundary condition for 200 frequency points 
on a single processor (3.0GHz) with 4GB memory. This model was too large to run in a 
full-wave simulator. 

 

 

 
Figure 10. Comparison of single-ended S-parameter results for link 9 (red: measurement; 

blue: simulation). 
 



 
Figure 11. Eye diagrams for the differential link 5 on layer S3 at 15Gbps, assuming10ps 

rise/fall time (tr20-80). 
 

 
 

Figure 12. Insertion loss comparison for different striplines on layer S3 (left: simulation; 
right: measurement). 

 

 
Figure 13. FEXT and transmission comparison for links on layer S3 and layer S5. 

 



PDN noise coupling and decoupling capacitor placement 
 
The last example is targeted at analyzing how simultaneous switching noise couples into 
the high-speed signaling nets through the PDN and whether placing decoupling 
capacitors would reduce the noise impact on signals. It is well-known that the PDN in the 
form of parallel plane pairs serves as current return path for signals. However, these plane 
pairs also behave as waveguides and support propagation of switching noise excited by 
vertical currents along vias. The propagation of the noise is affected by the shape and the 
size of plane pairs as well as the vertical vias which may be connected to decoupling 
capacitors [11], [12]. In this example, we look at transfer impedance in particular 
between signal via ports and noise sources to evaluate the strength of noise coupling. A 
smaller transfer impedance means less switching noise coupling and thus better signal 
integrity performance.  
 
Figure 14 depicts a test coupon including sketches of the via and trace layout and layer 
stack-up. Unlike the link example above where all the reference planes are ground, this 
test coupon has interleaved power planes and ground planes connected by power vias (in 
red) and ground vias (in blue) respectively. The via arrays on both ends of the differential 
links have a 1-mm pitch. All the signal/power/ground vias have 10mil drill diameter and 
30mil antipad diameter. There are 4 pairs of 2-inch long differential links on layer S14. 
We modeled the structure using our physics-based link models and also verified the 
model with 3D full-wave simulation (HFSS®). Correlation results in terms of single-
ended S-parameters are shown in Figure 15 indicating good accuracy up to 20GHz. The 
total run time (excluding generating transmission line models) was about 5 minutes using 
a Zpp calculation with PMC boundary conditions (single summation with 100 iterations) 
for 200 frequency points on a single processor (3.0GHz) with 4GB memory. 
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Figure 14. Description of via/trace layout and layer stack with mixed reference planes. 

 

 

 
Figure 15. Comparison of single-ended S-parameter results. 

 
To study the PDN noise coupling, we simulated two cases with four test coupons 
illustrated in Figure 16. Here, two of the four differential links are terminated by 50 Ohm 
resistors on top of the PCB surface. There are also 5 power/ground via pairs (indicated as 
P1-P5) located around the high-speed links for either decoupling capacitor placement or 
noise injection.  
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We first compared the transfer impedance between switching noise source P1 and signal 
via port 1 or port 8 as shown in Figure 17. The dotted blue curve represents the case (case 
A) without any decoupling capacitor (Figure 16-a). The dashed green curve represents 
the case (case A) where eight small decoupling capacitors (10nF, 100mΩ, 1nH) and one 
large global decoupling capacitor (3.3uF, 60mΩ, 17nH) are put in connection with the 
power vias on the PCB surface (Figure 16-b). These RLC values were obtained from 
curve fitting to measured S-parameters of MLC capacitors. It is shown that the 
decoupling capacitors are only effective in low frequencies (below 2GHz, e.g.). In high 
frequencies, the effects of decoupling capacitors are not observable due to parasitic 
inductance. The noise coupling through the PDN is mostly dominated by the plane pair 
resonance mode where we can actually see the impedance curves of two cases 
overlapping each other. 
 
Next, we added 72 extra ground/power via pairs in two rows (with 40-mil pitch) on two 
test coupons (case B) without any decoupling capacitors (Figure 16-c) and with 
decoupling capacitors (Figure 16-d).  The transfer impedance responses are plotted in 
Figure 17. Without decoupling capacitors, the low frequency response of the transfer 
impedance does not change as expected. However, adding two rows of power/ground via 
pairs forms two conducting walls next to the signal via ports and changes the plane pair 
resonances, shifting them to higher frequencies. On the other hand, adding many 
decoupling capacitors to these via pairs further reduces the equivalent series inductance 
and increases equivalent capacitance (and resistance). Below 2GHz, we can see that 
having 85 decoupling capacitors lowers the impedance much more than having 9 
decoupling capacitors. 

 

 

(a) 

(b) 



 

 

(c) 

(d) 

 
Figure 16. Top view of configuration of via array and stripline layout: (a) Case A without 

decaps; (b) Case A with 9 decaps; (c) Case B with extra ground-power via pairs, no 
decaps; (d) Case B with extra ground-power via pairs and 85 decaps. 

 
The simulation (excluding generating transmission line models) took about 6 minutes and 
5 hours for case A and case B, respectively, using Zpp calculation with PMC boundary 
condition (single summation with 100 iterations) for 200 frequency points on a single 
processor (3.0GHz) with 4GB memory. The difference in simulation time is mostly due 
to the Zpp calculation which slows down for a large number of via ports and for finite 
rectangular-shaped plane pairs. 
 
Figure 18 illustrates the simulated eye diagrams using ADS® for differential signals 
received at port 7 and port 8 at 0.8Gbps. PRBS8 125ps rise time data (±0.5V differential 
amplitude) were input to ports 5 and 6. Switching noise was modeled with symmetric 
triangular pulses (50% duty cycle) with a frequency of 400MHz and peak amplitude of 
1A [13], [14]. The noise is injected at P1. Because the links have relatively low loss 
(short length, small via stub, low data rate), the eyes are all wide open in the simulation 
even after considering the noise coupling effect. Adding extra power/ground via pairs has 
little impact on the time domain response, although adding decoupling capacitors 
increases the vertical eye opening slightly. In case of a very lossy channel, the attentuated 
signals at the receiver end would become more susceptible to the coupled noise. In that 



case, our models would predict that the decoupling capacitors will cause a more 
significant reduction of low frequency noise.  
 

 

 
Figure 17. Transfer impedance plots from noise source to signal via ports.  
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Figure 18. Simulated eye diagrams for the differential link at 0.8Gbps using PRBS_8 

pattern with 125ps rise time in ADS®. 
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5. Conclusions 
 
In this paper, we have extended our physics-based via and trace modeling methodology 
to now incorporate discrete components, such as decoupling capacitors, based on the joint 
research efforts between IBM and several universities. We have applied these models to 
study signal and power integrity performance of real designs including via arrays, high-
speed links modeling between BGA fields, PDN noise coupling and decoupling capacitor 
placement. The models demonstrated good correlation with full-wave simulations and 
measurements.  
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